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Abstract. We introduce TIDEE, an embodied agent that tidies up a
disordered scene based on learned commonsense object placement and
room arrangement priors. TIDEE explores a home environment, detects
objects that are out of their natural place, infers plausible object con-
texts for them, localizes such contexts in the current scene, and reposi-
tions the objects. Commonsense priors are encoded in three modules: i)
visuo-semantic detectors that detect out-of-place objects, ii) an associa-
tive neural graph memory of objects and spatial relations that proposes
plausible semantic receptacles and surfaces for object repositions, and
iii) a visual search network that guides the agent’s exploration for effi-
ciently localizing the receptacle-of-interest in the current scene to repo-
sition the object. We test TIDEE on tidying up disorganized scenes in
the AI2THOR simulation environment. TIDEE carries out the task di-
rectly from pixel and raw depth input without ever having observed the
same room beforehand, relying only on priors learned from a separate
set of training houses. Human evaluations on the resulting room reorga-
nizations show TIDEE outperforms ablative versions of the model that
do not use one or more of the commonsense priors. On a related room
rearrangement benchmark that allows the agent to view the goal state
prior to rearrangement, a simplified version of our model significantly
outperforms a top-performing method by a large margin. Code and data
are available at the project website: https://tidee-agent.github.io/.

1 Introduction

For robots to operate in home environments and assist humans in their daily
lives, they need to be more than step-by-step instruction followers: they need to
proactively take action in circumstances that violate expectations, priors, and
norms, and effectively interpret incomplete or noisy instructions by human users.
Consider Figure 1. A robot should realize the remote is out-of-place, should be
able to infer alternative plausible repositions, and tidy-up the scene by rearrang-
ing the objects to their regular locations. Such understanding would also permit
the robot to follow incomplete instructions from human users, such as “put the
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Fig. 1. TIDEE is an embodied agent that tidies up disorganized scenes us-
ing commonsense knowledge of object placements and room arrangements.
(a) It explores the scene to detect out-of-place (OOP) objects (in this case the remote
control). (b) It then infers plausible receptacles (the coffee table) through graph infer-
ence over a neural graph memory of objects and relations. (c-d) It then searches for the
inferred receptacle (the coffee table) guided by a visual search network and repositions
the object.

remote away”. For this, a robot needs to have commonsense knowledge regarding
contextual, object-object, and object-room spatial relations.

What is the form of this commonsense knowledge and how can it be acquired?
There are two sources of commonsense knowledge: i) communication of such
knowledge via natural language, for example, “the lamp should be placed on the
bed stand”, and ii) acquisition of such knowledge via visually observing the world
and encoding statistical relationships between objects and places. These two
sources are complementary. Commonsense in natural language is easy to specify
and modify through instruction, while commonsense through visual observation
is scalable and often more expressive. Consider, for example, tall yellow IKEA
lamps that are often placed on the floor, while shorter lamps are usually placed on
bed stands and are appropriately centered and oriented towards the bed. In this
example, object contextual relationships depend on more than the category label
“lamp”; they depend on sub-categorical information, which is easily encoded in
the visual features of the objects [25].

We introduce Teachable Interactive Decluttering Embodied Explorer (TIDEE),
which combines semantic and visual commonsense knowledge with embodied
components to tidy up disorganized home environments it has never seen before,
from raw RGB-D input. TIDEE explores a home environment to detect objects
that are not in their normal locations (that therefore need to be repositioned), as
shown in Figure 1(a). When an out-of-place (OOP) object is detected, TIDEE
infers plausible receptacles for the object to be placed onto, through graph in-
ference over the union of a neural memory graph of objects and spatial relations
and the scene graph of the room at hand (Figure 1(b)). It then actively ex-
plores the scene to find instances of the predicted receptacle category guided
by a visual search network, and repositions the detected out-of-place objects
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(Figure 1(c-d)).1 TIDEE uses both visual features and semantic information
to encode commonsense knowledge. This knowledge is encoded in the weights
of the out-of-place detectors, the neural memory graph weights, and the visual
search network weights, and is learned end-to-end to optimize objectives of the
rearrangement task, such as classifying out-of-place objects, inferring plausible
repositions, and efficiently locating an object of interest. To the best of our
knowledge, this is the first work that attempts to tidy up novel room environ-
ments directly from pixel and depth input, without any explicit instructions for
object placements, relying instead on learned prior knowledge to solve the task.

We test TIDEE in tidying up kitchens, living rooms, bathrooms and bed-
rooms in the AI2THOR simulation environment [23]. We generate untidy scenes
by applying random forces that push or pull objects within each room. We show
that human evaluators prefer TIDEE’s rearrangements more often than those
obtained by baselines or ablative versions of our model that do not use semantics
for out-of-place detection, do not use a learnable graph memory (defaulting in-
stead to most common placement), or do not have neural guidance during object
search. We further show that TIDEE can be adapted to respect preferences of
users by fine-tuning its out-of-place visuo-semantic object classifier based on in-
dividual instructions. Finally, we test a reduced version of TIDEE on the recent
scene rearrangement benchmark [3, 38], where an AI agent is tasked to reposi-
tion the objects to bring the scene to a desirable target configuration. TIDEE
outperforms the current state of the art. We attribute TIDEE’s excellent per-
formance to the modular organization of its architecture and the object-centric
scene representation TIDEE uses to reason about rearrangements.

2 Related Work

Embodied AI. The development of learning-based embodied AI agents has
made significant progress across a wide variety of tasks, including: scene rear-
rangement [3,17,38], object-goal navigation [1,6,8,19,41,43], point-goal naviga-
tion [1,19,30,31,40], scene exploration [7,10], embodied question answering [12,
18], instructional navigation [2,35], object manipulation [14,44], home task com-
pletion with explicit instructions [27,35,36], active visual learning [9, 15,20,39],
and collaborative task completion with agent-human conversations [29]. While
these works have driven much progress in embodied AI, ours is the first agent to
tackle the task of tidying up rooms, which requires commonsense reasoning about
whether or not an object is out of place, and inferring where it belongs in the
context of the room. Progress in embodied AI has been accelerated tremendously
through the availability of high visual fidelity simulators, such as, Habitat [31],
GibsonWorld [34], ThreeDWorld [16], and AI2THOR [23]. Our work builds upon
AI2THOR by relying on the (approximate) dynamic manipulation the simulator
enables for household objects.

1 We follow the terminology from AI2THOR [23] and define a receptacle as a type of
object that can contain or support other objects. Sinks, refrigerators, cabinets, and
tabletops are some examples of receptacles.
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Representing visual commonsense. Visual commonsense knowledge is of-
ten represented in terms of a knowledge graph, namely, a graph of visual entity
nodes (objects, parts, attributes) where edge types represent pairwise relation-
ships between entities. Knowledge graphs have been successfully used in visual
classification and detection [11,26], zero-shot classification of images [37], object
goal navigation [43], and image retrieval [22].

Closest to our work is the work of Yang et. al. [43] where a knowledge graph is
used to help an agent navigate to semantic object goals. While in the knowledge
graph of Yang et. al. [43] each node stands for an object category described by
its semantic embedding, in our case each node is an object instance described by
both semantic and visual features, similar to the earlier work of Malisiewicz and
Efros on visual Memex [25]. Moreover, we consider tidying up rooms, where nav-
igation to semantic goals is one submodule of what the agent needs to do. Lastly,
while [43] maps images to actions directly trained with reinforcement learning,
and graph indexing provides simply an additional embedding to concatenate to
the agent’s state, our model is modular and hierarchical, using a “theory” of
out-of-place objects, inferring regular object placements, exploration to localize
placements in the scene, and then taking actions to achieve the inferred object re-
arrangement. We show that TIDEE outperforms non-modular image-to-action
mapping agents in the scene re-arrangement benchmark in Section 4.5.

3 Teachable Interactive Decluttering Embodied Explorer
(TIDEE)

The architecture of TIDEE is illustrated in Figure 2. The agent navigates a home
environment and receives RGB-D images at each time step alongside egomotion
information. We consider both groundtruth depth and egomotion, as well as
noisy versions of both, and estimated depth in our experimental section. The
agent builds geometrically consistent spatial 2D and 3D maps of the environment
by fusing RGB-D input, following prior works [7] (Section 3.1). TIDEE detects
objects and classifies them as in or out-of-place (OOP) using a combination of
visual and semantic features (Section 3.2). When an OOP object is detected, the
agent infers plausible object context (i.e., plausible receptacle categories for the
OOP object to be repositioned on) through inference over a memory graph of
objects and relations (Memex) and the current scene graph (Section 3.3). The
agent then searches the current scene to find instances of the receptacle category
and a visual search network guides its exploration by proposing locations in the
scene to visit (Section 3.4). Once the receptacle is detected, the agent places
the OOP object on it. Navigation actions move the agent in discrete steps. For
picking up and placing objects, the agent must specify an object to interact with
via a relative coordinate (x, y) in the (ego-centric) frame.

3.1 Background: Semantic 3D mapping

TIDEE builds 3D semantic maps of the home environment it visits augmented
with 3D object detection centroids. These maps are used to infer spatial rela-
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Fig. 2. Architecture of TIDEE. TIDEE explores the scene, detects objects and
classifies whether they are in-place or out-of-place. If an object is out-of-place, TIDEE
uses graph inference in its joint external graph memory and scene graph to infer plau-
sible receptacle categories. It then explores the scene guided by a visual search network
that suggests where instances of a receptacle category may be found, given the scene
spatial semantic map. TIDEE iterates the steps above until it cannot detect any more
OOP objects, in which case it concludes that the room has been tidied up.

tions among objects and to guide exploration to objects-of-interest. Specifically,
TIDEE maintains two spatial visual maps of the environment that it updates
at each time step from the input RGB-D stream, similar to previous works [8]:
i) a 2D overhead occupancy map M2D

t ∈ RH×W and, ii) a 3D occupancy and
semantics map M3D

t ∈ RH×W×D×K , where K is the number of semantic object
categories; we use K = 116. The M2D maps is used for exploration and naviga-
tion in the environment. More details on our exploration and planning strategy
can be found in the supplementary.

We detect objects from K semantic object categories in each input RGB
image using the state-of-the-art d-DETR detector [46], pretrained on the MS-
COCO datasets [24] and finetuned on images from the AI2THOR training houses.
We obtain 3D object centroids by using the depth input to map detected 2D
object bounding boxes into a 3D box centroids. We add these in the 3D seman-
tic map with one channel per semantic class, similar to Chaplot et. al. [9], but
in 3D as opposed to a 2D overhead map. We did not use 3D object detectors
directly because we found that 2D object detectors are more reliable than 3D
ones likely because of the tremendous pretraining in large-scale 2D object de-
tection datasets, such as MS-COCO [24]. Finally, to create the 3D maps M3D,
we concatenate the 3D occupancy maps with the 3D semantic maps .

We further maintain an object memory MO as a list of object detection 3D
centroids and their predicted semantic category labels MO = {[(X,Y, Z)i, ℓi ∈
{1 . . .K}], i = 1 . . . N}, where N is the number of objects detected thus far. The
object centroids are expressed with respect to the coordinate system of the agent,
and, similar to the semantic maps, are updated over time using egomotion.
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Fig. 3. out-of-place objection classification using spatial language description
features celang and visual features cevis.

3.2 Detecting out-of-place objects

TIDEE detects objects and classifies whether each one is in or out-of-place
(OOP) using both visual object features and language descriptions of the ob-
ject’s spatial relations with its surrounding objects, such as “The alarm clock is
on the sofa. The alarm clock is next to the coffee table.” We train three OOP
classifiers: one that relies only on visual features, one that relies only on language
descriptions of the relations of the object with its surroundings that can more
easily adapt to user preferences, and one that fuses both visual and language
features, as shown in Figure 3.

The visual OOP classifier (dDETR-OOP) builds upon our d-DETR detector.
Specifically, we augment our d-DETR detector with a second decoding head
and jointly train it under the tasks of localizing objects and predicting their
semantic categories, as well as their in or out-of-place status. We consider the
query embedding of the d-DETR decoder as relevant visual features cevis for
OOP classification.

The language OOP classifier (BERT-OOP) infers the relations of the detected
object to surrounding objects and describes them in language form. We consider
the following spatial relations: (i) A supported-by B, where B is a receptacle
class, (ii) A next-to B, A closest-to B. We detect these pairwise relations us-
ing Euclidean distances on detected 3D object centroids in the object memory
MO. For more details on our object spatial relation detection, please see the
supplementary. We represent all detected pairwise relations as sentences of the
form “The {detection class} is {relation} the {related class}”, and concatenate
the sentences to form a paragraph, as shown in Figure 3. We map this object
spatial context description paragraph into a neural vector celang for the relation
set given by the [CLS] token from the BERT model [13] pretrained on a lan-
guage masking task and then trained for plausible/non-plausible classification
in our training set. A benefit of the language OOP classifier is that it can adapt
to user’s specifications without any visual exemplars of plausible/implausible
object arrangements. Consider, for example, the instruction “I want my alarm
clock on the bed stand”. Using such instruction, we generate positive and nega-
tive descriptions of in and out-of-place alarm clocks by adapting the preference
into a positive sample (e.g. “Alarm clock supported-by the bed stand”), and
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Fig. 4. Graph inference over the union of the Memex graph and the current
scene graph infers plausible receptacle categories for an out-of-place object.

taking relations in the training set that include the alarm clock and a different
receptacle class as negative samples (“Alarm clock supported-by the desk”).

The multimodal classifier (dDETR+BERT-OOP) concatenates cevis and celang

as input to predict OOP classification labels for the detected object.

3.3 Inferring plausible object contexts with a neural associative
graph memory

Once an OOP object is detected and picked up, TIDEE infers a plausible place-
ment location for the object in the current scene. As shown in Figure 4, TIDEE
includes a neural graph module which is trained to predict plausible object
placement proposals of OOP objects by passing information between the OOP
object to be placed, a memory graph encoding plausible contextual relations
from training scenes, and a scene graph encoding the object-relation configura-
tion in the current scene. Message passing is trained end-to-end to predict one
of the possible receptacle classes in AI2THOR to place the OOP object on.

We instantiate an OOP node, denoted nOOP, consisting of the detected OOP
object for which we want to infer a plausible receptacle category by concatenating
the ROI-pooled detector backbone features and a category embedding of the
predicted object category.

The structure of the memory graph (nodes and edges) is instantiated from
5 out of 20 training houses. Each object in the scene is given a node in the
graph that consists of a category embedding and ROI-pooled detector backbone
features using the bounding box of the object at a nearby egocentric viewpoint.
Edge weights in the memory graph correspond to spatial relations detected be-
tween pairs of object instances that are within a distance threshold. We consider
six spatial relations and corresponding edge types: above, below, next to, sup-
ported by, aligned with, and facing [21]. We infer these using spatial relation
classifiers that operate on ground-truth 3D oriented bounding boxes. Though
the graph may contain noisy, non-important edges between object instances, for
example, “the coffee table is next to the bed” which may introduce a spurious de-
pendence between a bed and a coffee table instance, the edge kernel weights are
trained end-to-end to infer plausible receptacles for OOP objects, and thus graph
inference can learn to ignore such spurious edges. We call our memory graph



8 Sarch et al.

Fig. 5. The visual search network conditions on an object category of interest, and
proposes locations for the agent to visit in the scene to find instances of that category.

“Memex” to highlight that nodes represent object instances, similar to [25], and
not object categories as in previous works [43].

The structure of the scene graph [22] is instantiated from observations ob-
tained while mapping the current scene, as in Section 3.1. Nodes in the scene
graph represent ROI-pooled features and category embeddings of objects de-
tected by the agent in MO. We include an additional node for the room type. We
fully-connect all nodes within the scene graph. Compared to the Memex graph,
we do not include separate edge weights for relations as most of the Memex
relations require accurate 3D bounding boxes that we do not have access to at
inference time.

We add “bridge edges”, as additional learnable edge weights, between nodes
in the scene graph and Memex nodes with the same category, following [45], to
allow information to flow between the current scene and the memory graph. We
further connect nOOP to all current scene nodes and to the room type node.
After message passing, we pass the updated nOOP through an MLP to get logits
for each possible receptacle class in AI2THOR.

The network is trained for predicting plausible receptacles for OOP objects in
15 training houses. We use 15/20 houses to train the weights so as to not overlap
with the houses used for the memory graph. Relation-specific edge weights are
learned end-to-end by Relational Graph Convolutions (rGCN) [32]. We supervise
the network via a cross-entropy loss using ground-truth receptacle categories for
each “pickupable” object from the AI2THOR original scene configurations. More
details of our graph inference can be found in the supplementary.

3.4 Intelligent exploration using a visual search network

After inferring a target receptacle category, TIDEE localizes it in the scene and
places the OOP object on top of it. In the case that instances of the target
receptacle category have already been detected in the scene, our agent navigates
to the corresponding instance using its navigation path planning controllers from
Section 3.1. In the case that the target receptacle category has not yet been
detected, our model predicts plausible locations to search for the receptacle using
a category-conditioned visual search network fsearch(M

3D, r).
The visual search network fsearch(M

3D, r) takes as input a 3D spatial seman-
tic map M3D and a receptacle category label r represented by a learned category



TIDEE: Tidying Up with Commonsense Priors 9

embedding and outputs a distribution over 2D overhead locations in the current
environment for TIDEE to navigate towards and find the receptacle, as shown in
Figure 5. fsearch convolves the features of the 3D semantic map with the category
category features of r and predicts an overhead heatmap, trained with a stan-
dard binary cross entropy loss. We threshold the predicted heatmap m and use
non-maximum suppression via farthest point sampling to obtain a set of search
locations. We rank the search locations based on their score and visit them se-
quentially until the target receptacle category is detected with high probability.
Further architectural details for fsearch can be found in the supplementary.

4 Experiments

We test TIDEE on reorganizing untidy rooms in the test houses of the AI2THOR
simulation environment. Our experiments aim to answer the following questions:

(i) How well does TIDEE perform in tidying up scenes? Section 4.2
(ii) How much does the combination of visual and semantic features help in

detecting out-of-place objects over visual features alone? Section 4.3
(iii) How much does exploration guided by the proposed visual search network

improve upon random exploration for detecting objects of interest? Section 4.4
(iv) How well does TIDEE perform in the task of scene rearrangement [3]—

which requires memorization of a specific prior scene configuration? Section 4.5
(v) How well can TIDEE adapt zero-shot to human instructions and alter

placement priors accordingly? Section 4.6

4.1 Tidying-up task definition

Dataset We create untidy scenes by selecting a subset of “pickupable” objects2.
We displace each object from its default location by moving the object to a
random location in the scene and either dropping the object or applying a force
in a random direction and allowing the AI2THOR physics engine to resolve the
object’s end location. We consider all available room types, namely bedrooms,
living rooms, kitchens and bathrooms. We generate 8000 training, 200 validation,
and 100 testing messy configurations. The goal of the agent is to manipulate the
messy objects back to plausible locations within the room. An episode ends once
the agent executes the “done” action or a maximum of 1000 steps have been
taken. For more details on the task and dataset, please see the supplementary.

4.2 Object repositioning evaluation

We have TIDEE and all baselines perform the tidy task to detect out-of-place
objects and reposition them within the scene.

2 Pickupable objects are a predefined set of 62 object classes in AI2THOR [23] that
are able to be picked up and repositioned by the agent, such apple, book, and laptop.
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Evaluation metrics Quantitative evaluation of object repositioning is difficult: an
object may have multiple plausible locations in a scene, and therefore measuring
the distance from a single initial ground-truth 3D location is usually not reflective
of performance. We thus evaluate the plausibility of object repositions of our
model from those of baseline models by querying human evaluators in Amazon
Mechanical Turk (AMT). Given two candidate repositions by for the same object
TIDEE and a baseline, we ask human evaluators to select the one they find most
plausible. We include the AMT interface we used in the supplementary.

Table 1. Percent of human evaluators that
prefer TIDEE object repositions versus
baselines. Reported is mean and standard er-
ror across subjects (n=5). All preferences are
significantly above chance (*p<0.05, **p<0.01,
Binomial test). Bold indicates higher preference
for TIDEE.

TIDEE vs CommonMemory 54.30±3.32*
TIDEE vs WithoutMemex 54.32±4.67*
TIDEE vs 3DSmntMap2Place 57.69±1.29**
TIDEE vs RandomReceptacle 64.59±2.94**
TIDEE vs MessyPlacement 92.06±1.57**
TIDEE vs AI2THORPlacement 34.00±3.13**

Table 2. Evaluating visual
search performance for find-
ing objects of interest in test
scenes for TIDEE and an explo-
ration baseline that uses our 2D
overhead occupancy maps to pro-
pose random search locations [42].

% Success ↑ Time Steps ↓

TIDEE 72.4 88.8
w/o VSN 64.8 100.9

Baselines We compare TIDEE against baselines that vary in their way of in-
ferring plausible receptacle categories for repositioning of out-of-place objects.
All baselines use the same mapping and planning for navigation, the same mul-
timodal classifier for detecting out-of-place objects (dDETR+BERT-OOP), and the
visual search network for localizing receptacle instances of a category. We com-
pare placements from TIDEE against the following baselines: (i) CommonMemory:
A model that considers the most common receptacle in the training set for the
out-of-place object category. (ii) WithoutMemex: A model that uses the scene
graph but not the Memex for graph inference. (iii) 3DSmntMap2Place: A model
that proposes repositioning locations within the current scene by conditioning
the visual search network on the category label of the out-of-place object. We
threshold all predicted map locations and do farthest point sampling to obtain
a set of diverse object placement proposals. The proposals are sorted by confi-
dence value and visited sequentially until any receptacle is found within the local
region of the proposed location. (iv) RandomReceptacle: A model that selects
as the target receptacle the first receptacle detected by a random exploration
agent. (v) AI2THORPlacement: The location of the OOP object in the original
(tidy) AITHOR scene. The default object positions usually follow commonsense
priors of scene arrangements. (vi) MessyPlacement: The location of the OOP
object in the messy scene.
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We report human preferences for OOP object repositions for our model ver-
sus each of the baselines in Table 1. TIDEE is preferred 54.3% of the time
over CommonMemory, the most competitive of the baselines. CommonMemory does
not consider the visual features of the out-of-place object, rather, only its se-
mantic category, and thus cannot reason using sub-categorical information re-
garding object placements. TIDEE is still preferred 34% of the time over the
AI2THORPlacement placements indicating that its re-placements are plausible
and competitive with an oracle. We note that a perfect model would at best ob-
tain a (50-50) preference compared to these placements provided by the AITHOR
environment designers.

4.3 Out-of-place detector evaluation

In this section, we evaluate TIDEE’s accuracy for detecting objects in and out-
of-place from images collected from the test home environments. An in-place
object is one in its default location in the AITHOR scene, while an out-of-place
object is one moved out-of-place as defined at the beginning of Section 4. We
compute average precision (AP) at IOU thresholds of 0.25 and 0.5 for in-place
(IP) and out-of-place (OOP) objects, as well as the meanAP (mAP) for visual
only (dDETR-OOP), language only (BERT-OOP) and multimodal (dDETR+BERT-OOP)
classifiers described in Section 3.2. We also compare against an oracle BERT
classifier that assumes access to ground-truth 3D object centroids, bounding
boxes, and category labels to detect relations and form descriptive utterances of
in and out-of-place objects, which we call oracle-BERT-OOP.

We show quantitative comparisons in Table 3. Combining language and visual
features performs slightly better than using language or visual features alone
for out-of-place object detection. The benefit of the language classifier is that
it can be re-trained on-demand to adjust to human instructions without any
visual training data, as we explain in Section 4.6. The good performance of the
oracle BERT classifier suggests that simple relations inferred from accurate 3D
centroids likely suffice to classify in- and out-of-place objects in AI2THOR scenes
if perception is perfect.

Table 3. Average precision (AP) for in and out-of-place object detection.
Combining vision and language features helps detection performance. IP = in place;
OOP = out of place.

mAP0.25 APIP
0.25 APOOP

0.25 mAP0.5 APIP
0.5 APOOP

0.5

dDETR+BERT-OOP 51.09 58.41 43.78 46.26 53.64 38.88
dDETR-OOP 49.98 57.60 42.37 44.98 52.79 37.17
BERT-OOP 31.71 41.13 22.30 25.25 33.79 16.71

oracle-BERT-OOP – – – 90.70 96.24 85.16
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Fig. 6. Visual Search Network predictions encode object location priors for differ-
ent object categories.

4.4 Visual search network evaluation

In this section, we compare exploration for finding objects of interest in test
scenes (one category of the possible 116 per episode) guided by TIDEE’s visual
search network against an exploration agent that uses the 2D overhead occu-
pancy map and samples unvisited locations to visit, similar to Yamauchi [42].
We adopt the success criteria similar to the object goal navigation [4] and de-
fine a successful trial as one where the agent is within a radius of any target
object category instance and the object is visible within view. We report the
percentage of successful episodes performed by the agent and average number
of time steps across all episodes in Table 2. If an agent fails an episode, the
number of time steps defaults to the maximum allowable steps for each episode
(200). TIDEE outperforms the exploration baseline. We show visualizations of
the network predictions in Figure 6, and also in the supplementary.

4.5 Scene Rearrangement Challenge

We test TIDEE to generalize to the recent scene rearrangement benchmark
of [38], which considers an AI agent tasked with repositioning objects in a scene
in order to match the prior configuration of an identical scene. We consider
the two-phase rearrangement setup where in the first “walkthrough” phase, the
agent observes a room in its initial configuration, and in the second so called “un-
shuffle” phase, observes the same room with some objects in new configurations
and is tasked to rearrange the room back to its initial configuration. While the
challenge considers both rearranging objects to different locations within a room
and changing their open/close states, we only consider repositioning of objects
because our current model does not handle opening and closing receptacles.

We simplify TIDEE’s architecture and only maintain the 2D & 3D occupancy
map for navigation and the object memory MO for keeping track of objects and
their labels over time. We start each phase by exploring the scene and detecting
objects. As in Section 3.2, we infer the relations for all pickupable objects in the
object memory MO in the initial and shuffled scenes. We consider an object of
the initial scene displaced if its category label has been detected in the shuffled
scene and the proportion of inferred relations that are different across the two
scenes ({# same relations}/{# different relations}), initial and shuffled, is less
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than a threshold (we use 0.35). For example, a bowl with relations bowl next to
sink, bowl supported by countertop, bowl next to cabinet in the initial scene, and
relations bowl next to chair, bowl supported by dining table, bowl next to lamp in
the shuffled scene is considered misplaced by TIDEE. Then, our agent navigates
to the object’s 3D location detected in the initial scene and places it there. Our
agent uses the navigation controllers from Section 3.1.

We use the evaluations metrics described in Weihs et. al. [38] : (1) Success (↑):
the trial is a success if the initial configuration is fully recovered in the unshuffle
phase; (2) % FixedStrict (↑): the proportion of objects that were misplaced
initially but ended in the correct configuration (if a single in-place object is
moved out-of-place, this metric is set to 0); (3) % Energy (↓): the energy is
a measure for the similarity of the rearranged scene and the original scene,
the lower the more similar (for more details, refer to Weihs et. al. [38]); (4) %
Misplaced (↓): this metric equals the number of misplaced objects at the end of
the episode divided by the number of misplaced objects at the start.

We report TIDEE’s performance compared to the top performing methods
for the two-phase re-arrangement in Table 4. The model from Weihs et. al. [38]
trains a reinforcement learning (RL) agent with proximal policy optimization
(PPO) and imitation learning (IL) given RGB images as input and includes a
semantic mapping component adapted from the Active Neural SLAM model [7].
We additionally show the robustness of TIDEE to realistic sensor measurements.
We consider three different versions of TIDEE depending on the source of ego-
motion and depth information: (i) TIDEE uses ground-truth egomotion and
depth. (ii) TIDEE+noisy pose uses ground-truth depth and egomotion from
the LocoBot agent in AI2THOR with Gaussian movement noise added to each
movement based on measurements of the real LocoBot robot [28] (forward move-
ment σ = 0.005 meters; rotation σ = 0.5 degrees). (iii) TIDEE+est. depth uses
ground-truth egomotion and depth obtained from the depth prediction model of
Blukis et. al. [5], which takes in egocentric RGB images. The model is pre-trained
and then finetuned on the training scenes of ALFRED [35].

4.6 Updating placement priors by instruction

In this section, we test whether we can alter the OOP classifier on-demand using
language specifications for in and out-of-place. Since alarm clocks are often found
on desks in AI2THOR, we tested whether augmenting training by pairing the
sentence “alarm clock is supported by desk” with the out-of-place label would al-
low us to alter the OOP classifier’s output. As shown in Table 5, across three test
scenes where alarm clocks are found on desks, the initial OOP object classifier
gives us low probability that the alarm clock on the desk is out-of-place. We then
add in the language description “alarm clock is supported by desk” for a small
amount of additional iterations. As shown in Table 5, we find that our procedure
suffices to alter the priors of the classifier. We provide additional examples using
various object-relation pairings in the supplementary.
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Table 4. Test set performance on 2-Phase Rearrangement Challenge (2022).
TIDEE outperforms the baseline of [38] even with realistic noise.

% FixedStrict ↑ % Success ↑ % Energy ↓ % Misplaced ↓

TIDEE 11.6 2.4 93 94
TIDEE +noisy pose 7.7 1.2 101 101
TIDEE +est. depth 5.9 0.6 97 97
TIDEE +noisy depth 11.4 2.0 94 95
Weihs et al. [38] 0.5 0.0 110 110

Table 5. Altering pri-
ors with instructions.
The confidence of the
out-of-place classifier for
clocks found on desks in
three test scenes increases
when the additional spatial
description for indicating
out-of-place clocks.

Before After

Clock #1 .08 .73
Clock #2 .10 .62
Clock #3 .12 .76

Limitations. TIDEE has the following two limita-
tions: i) It does not consider open and closed states
of objects, or their 3D pose as part of the messy and
reorganization process, which are direct avenues for
future work. ii) The messy rooms we create by ran-
domly misplacing objects may not match the messi-
ness in human environments.

5 Conclusion

We have introduced TIDEE, an agent that tidies
up rooms in home environments using commonsense
priors encoded in visuo-semantic out of place detec-
tors, visual search networks that guide exploration
to objects, and a Memex neural graph memory of
objects and relations that infers plausible object
context. We evaluate with human evaluators, and find that TIDEE outperforms
agents that lack it’s modular architecture, as well as modular agents that lack
TIDEE’s commonsense priors. TIDEE can be instructed in natural language
to follow on-demand specifications for object placement. Finally, we establish a
new state-of-the-art for the scene rearrangement challenge of Weihs et. al. [38]
by simplifying TIDEE’s architecture to memorize a single scene as opposed to
using a prior learned across multiple environments. We believe TIDEE takes an
important step towards embodied visuo-motor commonsense reasoning.
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S1 Overview

Section S2 contains more details of the methods described in the main paper.
Section S3 provides additional details on the experiments. Section S4 provides
additional evaluation of the networks.

S2 Implementation details

S2.1 Virtual environment and action space

We use the following actions: move forward, rotate right, rotate left, look up,
look down, pick up, put down. We rotate in the yaw direction by 90 degrees,
and rotate in the pitch direction by 30 degrees. We do not constrain our agent
to grid locations. The RGB and depth sensors are at a resolution of 480x480,
a field of view of 90 degrees, and lie at a height of 0.9015 meters. The agent’s
coordinates are parameterized by a single (x, y, z) coordinate triplet with x and
z corresponding to movement in the horizontal plane and y reserved for the
vertical direction. Picking up objects occurs by specifying an (x,y) coordinate
in the agent’s egocentric frame. If by ray-tracing, the point intersects an object
that is pickupable and within 1.5 meters of the agent, then the pickup action
succeeds. Placing objects occurs by specifying an (x,y) coordinate in the agent’s
egocentric frame to place the object. If by ray-tracing, the point intersects an
object that is a receptacle class, has enough free space in the radius of the target
location, and within 1.5 meters of the agent, then the place action succeeds if
the agent is holding an object. Since some objects require their state to be open
for placement to successfully occur (e.g. Fridge), the agent will also try to open
the receptacle if placement initially fails.

S2.2 Pseudo code for TIDEE

We present pseudo code for the TIDEE algorithm in Algorithm S1. We denote
FMM to mean Fast Marching Method [33], g to denote the point goal in the 2D
overhead map M2D, r to denote a receptacle, and fps to denote farthest point
sampling. If TIDEE does not find one of the predicted receptacles from the
rGCN network, TIDEE will attempt to retrieve a general receptacle class from
its memory of detected objects, navigate there, and attempt to place it. If after
m placement attempts the object is still not placed successfully (for example if
TIDEE gets stuck while navigating), TIDEE will drop the object at its current
location and resume the out-of-place search.

S2.3 Semantic mapping and planning

TIDEE maintains two spatial visual maps of its environment that it updates at
each time step from the input RGB-D stream: i) a 2D overhead occupancy map
M2D

t ∈ RH×W and, ii) a 3D occupancy and semantics map M3D
t ∈ RH×W×D×K ,
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Algorithm S1 TIDEE algorithm

while unexplored area > A do ▷ Mapping the scene
if g reached then

Sample new g in unexplored area
end if
Execute movement with FMM to g
Update M2D, M3D,MO

end while
Sample new g in reachable area ▷ out-of-place detection
while not oop found after sampling k goals do

if g reached then
Sample new g in reachable area

end if
Execute movement with FMM to g
Update M2D, M3D,MO

Run dDETR+BERT-OOP

if oop found then
navigate to oop, Execute PickupObject
r ← Run rGCN ▷ Infer plausible context
if r ∈MO then

navigate to r with FMM, Execute PutObject
else

m ← Run fsearch ▷ Localize context
for g ∈ fps(m) do

navigate to g with FMM
if r detected then

navigate to r with FMM
Execute PutObject

end if
end for

end if
end if

end while
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where K is the number of semantic object categories, we use K = 116. The
M2D maps are used for exploration and navigation in the environment. The
M3D maps are used for inferring locations of potential receptacles conditioned
on their semantic categories, as described in Section 3.4 of the main paper.

At every time step t, we unproject the input depth maps using intrinsic and
extrinsic information of the camera to obtain a 3D occupancy map registered to
the coordinate frame of the agent, similar to earlier navigation agents [7]. The
2D overhead maps M2D

t of obstacles and free space are computed by projecting
the 3D occupancy along the height direction at two height levels and summing.
For each input RGB image, we run a state-of-the-art d-DETR detector [46]
(pretrained on COCO [24] then finetuned on AI2THOR) to localize each of K
semantic object categories. Similarly, we use the depth input to map detected 2D
object bounding boxes into a 3D centroids dilated with Gaussian filtering and
add them into the 3D semantic map, we have one channel per semantic class—
similar to [9], but in 3D as opposed to a 2D overhead map. We did not use 3D
object detectors directly because we found that 2D object detectors are more
reliable than 3D ones simply because of the tremendous pretraining in large-scale
2D object detection datasets, such as MS-COCO [24]. Finally, 3D maps M3D

result from the concatenation of the 3D occupancy maps with the 3D semantic
maps. Alongside the 3D semantic map M3D, we maintain an object memory
MO as a list of object detection 3D centroids and their predicted semantic
labels MO = {[(X,Y, Z)i, ℓi ∈ {1...K}], i = 1..K}, where K is the number of
objects detected thus far. The object centroids are expressed with respect to the
coordinate system of the agent, and, similar to the semantic maps, updated over
time using egomotion.

Exploration and path planning TIDEE explores the scene using a classical map-
ping method. We take the initial position of the agent to be the center coordinate
in the map. We rotate the agent in-place and use the observations to instantiate
an initial map. Second, the agent incrementally completes the maps by ran-
domly sampling an unexplored, traversible location based on the 2D occupancy
map built so far, and then navigates to the sampled location, accumulating the
new information into the maps at each time step. The number of observations
collected at each point in the 2D occupancy map is thresholded to determine
whether a given map location is explored or not. Unexplored positions are sam-
pled until the environment has been fully explored, meaning that the number of
unexplored points is fewer than a predefined threshold.

To navigate to a goal location, we compute the geodesic distance to the goal
from all map locations using a fast-marching method [33] given the top-down
occupancy map M2D and the goal location in the map. We then simulate action
sequences and greedily take the action sequence which results in the largest
reduction in geodesic distance.
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S2.4 2D-to-3D unprojection

For the i-th view, a 2D pixel coordinate (u, v) with depth z is unprojected
and transformed to its coordinate (X,Y, Z)T in the reference frame:

(X,Y, Z, 1) = G−1
i

(
z
u− cx
fx

, z
v − cy
fy

, z, 1

)T

(1)

where (fx, fy) and (cx, cy) are the focal lengths and center of the pinhole camera
model and Gi ∈ SE(3) is the camera pose for view i relative to the reference
view. This module unprojects each depth image Ii ∈ RH×W×3 into a pointcloud
in the reference frame Pi ∈ RMi×3 with Mi being the number of pixels with an
associated depth value.

We voxelize the point cloud into a 128x64x128 occupancy ∈ {0, 1} centered
at the initial position of the agent, and aggregate (take max) the occupancies
across views to obtain Mo

t ∈ {0, 1}.

S2.5 Object tracking and semantic aggregation.

As described in Section 3.2, we track previously detected objects by their 3D
centroid C ∈ R3. We estimate the centroid by taking the 3D point corresponding
to the median depth within the bounding box detection and bring it to a common
coordinate frame. We extend previous work [9] to 3D and add a channel to the
3D occupancy map for each object category. For each detected centroid Cj of
class index j, we accumulate it into a 3D occupancy map. We then apply a
Guassian filter g to dilate the centroids in the map and add this to to the jth
channel of the 3D semantic occupancy map Mt. Thus, the jth channel of the 3D
semantic map at time step t can be written as:

M j
t = Mo

t + g(f(Cj)) (2)

where Mo
t ∈ RH×W×D is the accumulated 3D occupancy, g is a guassian filter

operation, and f accumulates each centroid i in class index j into an occupancy
map M ∈ RH×W×D. Centroids are more robust to noisy depth and detection
estimates, and often provide enough information for active search and object
spatial tracking.

S2.6 Out-of-place detector

As described in Section 3.2 of the main paper, our OOP detector makes use of vi-
sual and relational language as input to our OOP network. We generate training
scenes with some objects out-of-place using the same algorithm described in Sec-
tion S3.1. We first finetune deformable-DETR [46] (pretrained on COCO [24])
on the training houses (object seed randomized) to predict the bounding boxes,
semantic segmentation masks, and semantic labels by generating random tra-
jectories through the scene. We then train on the messup configurations and
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add an additional classification loss on the output decoder queries to predict
whether the object is in- or out-of-place. We use the output decoder queries for
the dDETR-OOP classifier.

For the language detector, we freeze the detector described above, and use it
to update our object tracker MO while the agent explores the scene. Then, the
agent visits a location to search for an out-of-place object and for each object
detected in view above a confidence threshold, we infer its relations described
in Section S2.7 with all objects in memory, and systematically combine them
into a paragraph of text. An example paragraph is shown below. The pillow is
next to the key chain. The pillow is next to the laptop. The pillow is next to the side
table. The pillow is next to the mug. The pillow is next to the teddy bear. The pillow
is supported by the side table. The pillow is closest to the mug. We make use of the
extensive pretraining of the BERT language model [13] as a starting point for our
language classifier. We tokenize the paragraph text and give it as input to the BERT
model. For the language-only detector (BERT-OOP), we give the pooled output {cls}
token from BERT to a three-layer fully-connected classifier to predict in or out-of-
place.

For the language and visual detector (dDETR+BERT-OOP), we concatenate the pooled
output {cls} token from BERT with the output query embedding corresponding to the
detected object from deformable-DETR, and give this concatenated embedding to a
three-layer fully-connected classifier to predict in or out-of-place. We train the classifiers
using known labels of in or out-of-place from our mess up algorithm.

For the BERT-only model, we give the pooled output {cls} token from BERT as
input to our classifier. For the visual-only model, we give the output query embedding
corresponding to the detected object from deformable-DETR to the classifier.

We use the same hyperparameters for training all classifiers. We use a batch size
of 25, an AdamW optimizer with a learning rate of 2e-7 and weight decay of 0.01, and
train for 20k iterations.

S2.7 Object centroid relations

As described in Section 3.2 of the main paper, we define a set of three relations based on
the estimated centroids of the detected objects within the scene. We use these relations
for building our input to the BERT out-of-place detector. These relations are computed
with the following metrics:

(i) Supported-by : A receptacle is defined as a type of object that can contain or
support other objects. Sinks, refrigerators, cabinets, and tabletops are some examples
of receptacles. For the floor receptacle class, we consider the point directly below the
object at the height of the floor (lowest height in our map). For all centroids Crec

t

corresponding to receptacle classes Lrec
t ⊆ Lt, we define the single object Lsupp ∈ Lrec

t

that supports the detected Cdet object as:

Lsupp = argmin(D(Cdet, Crec
t;ydiff<0)) (3)

Where D(x, Y ) is the euclidean distance between centroid x and each centroid in Y ,
and ydiff < 0 takes all tracked centroids which are below the height of the detected
centroid.

(ii) next-to: We define the objects Lnext that are next to the detected Cdet object
as:

Lnext = D(Cdet, Ct) < d (4)
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Where D(x, Y ) is the euclidean distance between centroid x and all centroids Y , and
d is a distance threshold.

(ii) closest-to: We define the single object Lclosest that is closest to the detected
Cdet object as:

Lclosest = argmin(D(Cdet, Ct)) (5)

Where D(x, Y ) is the euclidean distance between centroid x and all centroids Y .

S2.8 Relational graph convolutional network

As described in Section 3.3 of the main paper, we use a relational graph convolutional
network to predict plausible receptacle classes for the out-of-place object. The memex
graph nodes are the sum of a learned object category embedding and visual features
obtained from cropping the deformable-DETR backbone with the object’s bounding
box at the closest navigable location to the object. We connect nodes in the memory
graph by computing their relations as described in Section S2.9. For the out-of-place
object node, we similarly sum the learned embedding of the object’s category label
and visual features obtained from cropping the deformable-DETR backbone with the
detected bounding box. The scene graph nodes are deformable-DETR output query
features in the initial mapping of the scene for all detections above a confidence thresh-
old. We include a map type node which is initialized with a learned embedding for each
of the four room types.

We use the rGCN to message pass 1) within the memory graph, and 2) to bridge the
memory, scene, and out-of-place nodes. Let nOOP denote the node of the out-of-place
object initialized with a learned category class embedding and visual features.

Following the rGCN formulation in [32], we first update the nodes in the memory
graph to distribute information within the memory:

h
(l+1)
i = σ(

∑
r∈Rmem

∑
j∈Nmem

i,r

1

ci,r
W (l)

r h
(l)
j +W

(l)
0 h

(l)
i ), (6)

where h
(l)
i ∈ Rd(l)

is the hidden state of node vi in the l-th layer of the neural
network, with d(l) being the dimensionality of this layer’s representations, Nmem

i,r

denotes the set of memory neighbor indices of node i under relation r ∈ Rmem,
and ci,r is a problem-specific normalization constant.

Inspired by [45], we then define a set of four bridging edges Rbridge, one to
connect nOOP to the updated memory nodes of the same object class, one to
connect nOOP to all current scene nodes, one to connect nOOP to the room type
node, and one to connect the the updated memory nodes to current scene nodes
with the same category label. We then message pass via the bridging edges:

h
(l+1)
i = σ(

∑
r∈Rbridge

∑
j∈Nbridge

i,r

1

ci,r
W (l)

r h
(l)
j +W

(l)
0 h

(l)
i ), (7)

where N bridge
i,r denotes the set of bridge neighbor indices of the target node under

bridge relation r ∈ Rbridge.
We use four relational graph convolutional layers for each stage of message

passing. Finally, we run the updated out-of-place object node through a classifier
layer to predict a probability distribution over proposed receptacle classes to
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search for placing the target object. We optimize with a cross entropy loss using
the object’s ground truth receptacle label from the training scenes.

S2.9 Memex graph

We use 20 of the 80 training rooms to construct the memex graph. As de-
scribed in section 3.3 of the main paper, the memex graph is a large graph of
object nodes and relational edges that provide the relational graph convolutional
network with exemplar context of object-object and object-scene relations. We
obtain the ground truth category labels for the objects and use ground truth
information from the simulator to obtain the relations above, below, next to,
supported by, aligned with, and facing. The memex remains a constant graph
throughout all remaining training and testing scenes. We use simulator ground
truth information for convenience, but note that we could instead obtain the
neural memex graph from human annotations of real-world houses. We compute
above, below, next to, and supported by similar to Section S2.7, but instead use
a distance metric on the 3D bounding boxes. For aligned with, we check if the
3D bounding boxes have parallel faces. For facing, we note that the back of an
object usually carries more of its mass (e.g. the back of a sofa). Thus, we look
at the mass distribution of the object within its 3D bounding box, and take
the box face with the most of the point mass in its direction to be the back
of the object. An object is facing a second object if the frustum of its front
3D bounding box face intersects the second object. We only consider facing for
the following classes: Toilet, Laptop, Chair, Desk, Television, ArmChair, Sofa,
Microwave, CoffeeMachine, Fridge, Toaster.

S2.10 Visual search network

As described in Section 3.4 of the main paper, we use a visual search network
to propose search locations conditioned on an object class. The input to the
network is a 3D occupancy map ∈ RC×D×H×W with C = 116, D = 64, H =
128, W = 128. C = 116 represents a channel for each possible category in
AI2THOR, as described in Section S2.5. We first tile classes along all heights
in M3D to obtain a 2D input ∈ R(C·D)×H×W to the network. This enters four
2D convolutional layers and returns a feature map V uncond ∈ RC×H×W . The
target object class is encoded with a learned category embedding and matrix
multiplied with the feature map to condition the network on the target class.
This is sent as input to four additional 2D convolutional layers to get a final
output map V cond ∈ RH×W . We optimize this with a binary cross entropy loss
on each 2D position independently using a Guassian-smoothed 2D map of ground
truth object positions in the training scenes. Our output map provides spatial
positions at a resolution of 128×128. Since our output map need not predict a
single location to search, we give positive samples significantly larger class weight
than the negative samples to encourage high recall of the true location in the
thresholded area.
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S3 Experimental details

S3.1 Tidying task

Our tidying task begins with moving N objects out of their natural locations
in the scene. We use N = 5 and generate five messy configurations per test
room (total of 20 rooms × 5 configurations = 100 test configurations). For each
object to be moved out-of-place, we randomly select a pickupable object, spawn
an agent to a random navigable location in the scene at a random orientation in
increments of 90 degrees, and with probability p, drop the object at the agent’s
location, or with probability 1 − p, throw the object with a constant force and
let AI2THOR’s physics engine resolve the final location (action ”ThrowObject”
in AI2THOR). We use p = 0.5. In AI2THOR, the throw distance of an object
depends on its pre-defined mass, and thus the throw distance will change de-
pending on the object. We keep the throw force constant at 150.0 newtons. We
disable object breaking so that no objects are changed to their breaking state
after dropping or throwing them. We show examples of out-of-place objects in
Figure S1.

We define an episode as the time from the spawn of the agent in the messy
environment to the time the agent executes the “done” action, or 1000 steps have
been taken (whichever comes first). Once the tidying episode begins, the agent
is spawned near the center of the map. At each time step, the agent is given an
RGB and depth sensor, and its exact egomotion in terms of how far each action
takes the agent and in what direction. During the out-of-place detection phase,
TIDEE samples random locations within its 2D map to search.

S3.2 Human placement evaluation

We report in Section 4.2 of the main paper a human evaluation of TIDEE place-
ments compared to baselines. We use the Amazon Mechanical Turk interface to
query human evaluators as to whether they prefer TIDEE placements compared
to baseline placements. For all successful placements by the agents, we generate
three images of each placement to show the object from three distinct viewing
angles, as shown in Figure S2. We instruct the evaluators to choose between
the placements of TIDEE and the baseline placement by looking at the images
and picking which position of the object they would prefer. The full instructions
given to the human evaluators for an example statue placement is displayed be-
low. For this evaluation, we only consider objects which were picked up by both
agents (TIDEE and the baseline).

Consider a scenario where you are putting the statue into its correct location in
a room. Please choose which location you would prefer to place the statue within the
room. The two options (A & B) represent two different possible locations of the statue
in the same room (in the images the location of the statue is shown with a box). Each
option (A & B) show the object from three distinct camera angles to help you make your
decision. Important: Please judge only by the placement location of the object within
the room, and NOT by the orientation of the object on the supporting surface.
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Fig. S1. Example images of out-of-place objects.

S3.3 Out-of-place detection evaluation

We evaluate the out-of-place detector performance in Section 4.3 on the same messy
test scenes used for the tidying-up task. We generate 20 random views of each messy
configuration where at least one out-of-place objects is in view. The total evaluation
consists of 2000 images (20 scenes × 5 configurations × 20 views = 2000). We evaluate
each detector by measuring average precision across all the images, where in and out-
of-place are the two categories.

S3.4 Exploration with visual search network evaluation

We evaluate the visual search network to assist in object goal navigation for objects
in their default locations in the AI2THOR test scenes (20 scenes in total) in Section
4.4. For each test scene, the agent is tasked with finding each object category that
exists at least once in the test scene. Each episode involves finding an instance of a
given category. We consider all object categories across the AI2THOR simulator (116
categories). Tasking the agent under these specifications provides 591 total episodes in
the evaluation. As mentioned in the main text, the agent is successful when the agent is
within 1.5 meters of the target object and the object is visible to the agent. To declare
success, the agent must execute the ”Stop” command. If ”Stop” is not executed within
the maximum number of steps (200 max), the episode is automatically considered a
failure and the next episode will begin. Both TIDEE and the baseline presented in
Table 2 of the main text use the same object detector and navigation modules from
Section 3.1 of the main paper. The only difference is how the model selects locations
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Fig. S2. Example images shown to Amazon Mechanical Turk evaluators.

in the scene to search for the object-of-interest. For both TIDEE and the baseline, the
agent executes the ”Stop” command after the object category has been detected above
a threshold and the agent has navigated to the detected object using the estimated 3D
centroid.

S3.5 Updating placement priors by instruction

We show that we can alter the output of the language out-of-place detector by pairing
specific language input with a desired label after additional training in Section 4.3. To
do so, we first train the language detector (BERT-OOP) as described in Section S2.6 and
Section 3.2 of the main paper. We then target a relation-label pairing. For example, we
may want the relation ”alarm clock supported-by the desk” to output the label ”out-
of-place” (which does not appear in the unaltered training set) whenever the relation
occurs. Then, for an additional amount of (9k) iterations, whenever the relation ”alarm
clock supported-by the desk” appears in the training batch, we pair the sample with
the ”out-of-place” label as supervision.
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S4 Additional results

S4.1 2021 Rearrangement Challenge

In section 4.5 of the main paper, we report the performance of TIDEE on the 2022 rear-
rangement benchmark. We additionally report performance on the 2021 rearrangement
benchmark in Table S1.

Table S1. Test set performance on 2-Phase Rearrangement Challenge (2021).

% FixedStrict ↑ % Success ↑ % Energy ↓ % Misplaced ↓

TIDEE 8.9 2.6 93 95
TIDEE +noisy pose 6.6 1.9 97 98
TIDEE +est. depth 5.5 1.4 96 97
TIDEE +noisy depth 8.9 2.3 93 95
Weihs et al. [38] 1.4 0.3 110 110

S4.2 Visualizations of the Visual Search Network

In Section 4.4 of the main paper, we displayed visualizations of the Visual Search Net-
work predictions. We provide additional visualizations of the sigmoid output of our
Visual Search Network conditioned on an object category in test rooms in Figure S3.
We display an overhead view of the full scene on the left, and the network predic-
tions corresponding to the overhead spatial locations on the right conditioned on four
randomly-selected object categories. Darker red corresponds to higher probability. The
blue dot indicators plotted in the prediction maps correspond to the search locations
for the agent to visit after thresholding and farthest point sampling (for # location =
3). The output generally puts the highest probability at plausible areas for the category
to exist. However, occasionally the network puts high probability where it should not.
For example, the network puts high probability near a dresser for category ”Bed”, or
near the armchair for category ”Coffee Table”. This may be in part due to our train-
ing procedure to prioritize high recall over precision of the true location in our cross
entropy weighting.

S4.3 Evaluation of altering priors with natural language

In Section 4.6 of the main paper, we showed for a single example that we can alter the
learned priors of the out-of-place detector using external language input. We augment
training with nine additional object relation pairs that are among the most commonly
found in the AI2THOR houses and pair the relation with an out-of-place label. The
relation pairs include ”alarm clock is supported by desk” (from main text), ”Soap
bottle is supported by countertop”, ”Pen is supported by desk”, ”Laptop is supported
by desk”, ”Pillow is supported by bed”, ”Toilet paper is support by toilet”, ”salt
shaker is supported by countertop”, ”Spatula is supported by countertop”, ”Statue is
supported by shelf”, and ”Vase is supported by shelf”. We follow the same training
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Fig. S3. Examples of the output of the Visual Search Network in test scenes.

procedure as in Section S3.5. The average change in probability across test houses for
examples where the relation appears is shown in Table S2. The significant change in
probability indicates we are able to change the detector output with simple language
instructions.
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Table S2. Altering priors with instructions. The out-of-place confidence of
the out-of-place classifier before and after augmenting training with the uncommon
relation-label pairing.

Before instruction After instruction

Alarm Clock supported-by Desk .10 .70
Knife supported-by Dining Table .44 .91
Bowl supported-by Dining Table .23 .71
SoapBar supported-by Toilet .21 .68
Laptop supported-by Bed .25 .71
Apple supported-by CounterTop .14 .62
Mug supported-by CounterTop .27 .77
Newspaper supported-by Sofa .43 .98
Pillow supported-by Bed .56 .70
Book supported-by Desk .63 .88
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